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1. Introduction and results. Let h = h(ul.....um) be a square integrable

symmetric function on [0.1]m and assume that h is canonical, i.e., it satisfies

the condition
1
Ioh(ul.uz.....um)du1 =0 for all Ugs..oaU € [o0.1].
Let (XJ) be a sequence of independent identically distributed random variables
uniformly distributed over [0,1]. Consider the following random sequence of
normalized symmetric statistics

m/2

Y (¢) = n <3 h(X; .....X; ). 0<t<1,

161,< ... 1 <fne] 1 m

in D[0,1]. the space of right continuous functions on [0,1] having left limits
with Skorohod's J1 topology. A. Mandelbaum and M.S. Taqqu [3] showed that the
random sequence {Yn(t)} converges weakly in D[0,1] to the following process X:

X(ty=J...J - J...S h(ul""um)lt(vl)"'lt(vm)
[0.17" ro.1" |
°W(du1,dv1)...W(dum.dvm). 0gt(l,

where the right hand side is an m-ple Wiener integral with respect to a two
parameter Wiener process {W(u,v), O<u, v¢{1} and lt(°) is the indicator function
of [0,t]. X has continuous paths a.s. and note also that it can be written as

X(t) = J...f h(ug, ..o ou )W (dup). . W (du ). OStegl,
o.13"
with Wt(u) = W(u,t).

The purpose of this note is firstly to prove certain large deviations
results, i.e., asymptotic estimates of Freidlin-Wentzell type, for the above
process X, and secondly to remark that the functional law of the iterated
logarithm for X can be derived by the same arguments.

Let CN=C([0.1]; RN) be the space of RN-valued continuous functions x on
[0.1] vanishing at the origin, with the norm ||x||C = sup |x(t)| and the metric

0gt<1

d(+.*). where |-| stands for the Euclidean norm in R'. Let B=B(t)=(B,(t).I<i<N).
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0<t<1l, be an N-dimensional siandard Brownian motion with B(0)=0, and let HN
denote the reproducing kernel Hilbert space (RKHS) associated with B, i.e., the
Hilbert space consisting of absolutely continuous function ¢ on [0,1] such that
¢(0)=0 and its derivative ¢ is square integrable. Its norm ||¢||H is given by
||¢||H=||¢||2=(Ié|¢|2)1/2. HN is a subspace of CN and the sets Kr={¢eHN=||¢||H
{ r}. r>0, are compact in CN'

Define a mapping A from L2[0.1] ® H1 (the tensor product of L2[0.1] and

RKHS H,) to C, by

1
Af(t) = J...S h(ul.....um)f(ul,t)...f(um.t)dul...dum. 0gtg1
[o.17"
for feLz[O.l] @ Hl. and let G denote the class of functions

G = {g=Af. f e L2[0.1] @ H)}.
Let |]l+]]| be the norm of L2[O.1] ® H . which is given, e.g.. by
I1€1112=55 593 £(u.t))%aude. Define

D(g)=inf{|||£]]]: g=Af. £eL?[0.1] @ H)} for geC.

G ={g=Af: |||£]]] < r}. ro.

The main result of this note is the following

Theorem 1. (i) For any geG and for any 6§, 6'>0, there is a number a1=al(6.6'.
D(g)) such that
P(| Ix/ag| |, < 8) 2 exp[-(«®™/2)(D%(g) + 6°)]
for all a 2 a. and
(i1) for any &5, &', r>0, there is a number a2=a2(5.6'.r) such that
P(d(X/a.C) > 8) < exp[-(a2/™/2)(r%-5")]
for all a 2

02 .

In the proof of Theorem 1 we need the following Freidlin-Wentzell type
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estimates for N-dimensional Brownian motion B.

Theorem A (i) For any ¢ € Hh and for any 6, 6° > O, there is a number
al=a1(6.6’.||¢||H) such that
PC 1B/ - ol < 8) 2 expl-(a®/2)(|lel I + 6)]
for all a ?2 a, and
(ii) for any 6,6',r > O, there is a number a, = a2(6.6'.r) such that
P(d(B/a. K ) > 8) < exp[~(a®/2)(r?-5"))

for all a 2 ay-

Theorem A is a special case of general result on Gaussian processes, and we
shall use the following easy consequences of Theorem A (see [2]).

Let F be a continuous mapping from CN to Cl' homogeneous with degree p>0,

i.e., satisfying the condition F(c~)=ch(-) for any c>0.

Theorem B (1) For any yeHy and for any 5,50,
P(|IF(B)/a-F(9) ||, < 8) 2 expl-(a>P72)([lo] |2 + 5°)]
for all sufficiently large a, and
(i1) for any 6, &', r>0,
P(d(F(B)/a. F(K)) > 8) < exp[-(a®/P/2)(r*-5")]

for all sufficiently large a.

Theorem C

1im (1/a2P) log P(|[F(B)|| > @) = -b°72.
a-m

where

o
[

= me(|lel1Z: |IF(e)lg > 1)
sup {r%: sup(|IF(o)[lci @ € K) < 1).
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The arguments used in the proof of Theorem 1, combined with Strassen’s law
of the iterated logarithm for Brownian motion, yield also the following

functional iterated logarithm law for the process X.

Theorem 2. Define the random sequence {Zn) in C1 by
Z_(t) = X(nt)/(2n 1og2n)f'"2. 0<t<1, n23,
where log2=log log. Then, with probability 1 {Zn} is relatively compact and the

set of its limit points coincides with Gl'

Remark. The above theorem is an improvement of a recent result of H. Dehling
[1]. in the sense that a moment condition on h is weakened. However, it should
be noted that Dehling [1] proves more generally the functional law of the

iterated logarithm for {Yn(t)}. The methods of proofs are different.

2. Proof of Theorem 1
Let {ei. 1 2 0} be a complete orthonormal sequence (CONS) in L2[0.1] with

> 0} is a CONS in L2([0.1]™) and

e0=1. Then {eil(ul)...eim(um). L ERERS

heL2([0.1]m). symmetric and canonical, can be expanded as

h(u.....u)-E c e, (u)...e, (u), c e R.
1 1$i im il""'lm il 1 im m il...im
For N21 let
(u.....u)-E c e, (u)... e, (u),
hN 1 1$1 ---.1m$N il....im 11 1 im m

and define the process XN={XN(t). 0<t<1} by

XN(t) = ... '{hﬂ(ul""'um) 't(dul) Wt(dum).
[0.1]

Then we have
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Lemma 1
2/m
PO [lg > 2) € € exp(-0z>™

for all sufficiently large z>0, where C is a finite constant and the positive

. constant HN can be made arbitrarily large by taking N large.

Proof. The lemma follows from a result of Plikusas [5] on multiple Wiener
integrals and Lemmas 6.2 and 6.3 of [4]. Indeed it is enough to note that the
exponential bound obtained by Plikusas holds also for multiple Wiener integrals
with respect to two parameter Wiener processes and that, putting ZN=X-XN. we
have

Elzy(t + s)Z4 ()2 S Qs for0ge<e+s ¢,
with a finite constant Ch and

lEIZy() IPlIg = mt 1In-ny| 13,

where ||-||2 is the norm of L2([0.1]m). Now

Xy(t) =1§1,,,,,1mgN011"'im i;';;;eil(ul)"'eim(um)wt(dul)'"wt(dum)

and, since (ei) is orthonormal, each term of the right hand side can be written

as a product of Hermite polynomials, i.e.,

J...J e (“1)'"°1m(“m)'c(d“1)""t(d“m)

fo.11"
1 1
=H (J'e (U)W _(du))...H (J'e (u)¥W _(du)),
Py o Tt Priod Ot
. if there are P; ¢ (°).....pr % (+) among e (°).....e‘ (¢) with Py+...+p =m,
1 r 1 m
0<p1.....pr. where Hp(') is the p-th Hermite polynomial with leading coefficient

1. Note also that
1 1
B = (foel(u)wt(du).....foeN(u)Wt(du))
is an N-dimensional Brownian motion.

Define a mapping TN from CN to C1 by

N Al ¥ .
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T )= 3 ' for x=(xX,.....%y)eCy.
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Then

1 1
Xy (£)-Ty(B)(¢) = c {le(foeql(u)wt(du))...Hpr(fbeqr(u)wt(du))

g 1.....1 <N 1
- (J‘oeq (W, (du)) * e Ugeq Cyw, (@) 7).

XN- (B) is a finite linear combination of polynomials of degree { m-2.

Applying Theorem C to each term, we obtain

Lemma 2. For any 6 > O we have
P((1/) | IXy-Ty(B) || > 8) < C*rexp[c""a® (™2))

for sufficiently large a, where C' and C’'' are finite constants.

Since 'I‘N is clearly continuous and homogeneous with degree m, we get from

Theorem B

Lemma 3. (i) For any ¢ € HN and for any 6.6' > O,

P(|ITy(B)/a - Ty(o) |l < 8) 2 exn[~(«®™/2)(| ]9 ]2 + 5°)]
for sufficiently large a, and
(ii) for any 6,6'.r > O,

P((Ty(B)/a, Ty(K ))>8)  exp[-(a>™/2)(r%-5")]

for sufficiently large a.

Let {\h . J20} be a OONS in Hl. Then {eiw , 1,J 2 0} is a OONS in

o0
L2[0.1]0H1 and any fel2[0. 1]6H, can be expanded as f(u.t) = I ¢, e (u)V(t)
1,3=0 17

w [ ]
with 2
1,3=0

‘2

IciJ <@ Put ¢ (t) =j£0 cijwj(t). Then ¢, ¢ H, for all 1 2 0,

T A
A -
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2 2 2 2
flu.t)= S e (e (t) and |[[£]]] == e |15 lle |l = = e |15
1=0 i i 1=0 i''2 i''H 1=0 i''H

Now, let g = Af ¢ G with f & L%[0,1] 8 H, and define

gN(t) = f...IhN(ul....um)f(ul.t)...f(um.t)dul...dum.
[o.17"
- By Schwarz's inequality,

ls(t) - gy()] < 1In-hylly « (5o, t)au)™?

2 w2
L PREEXAO i

and so
Y 2.m/2
”g-gN”C < “h-hN‘lz ¢ (i§0”¢1“C)
o«
2.m/2
< iyl = 2 Feg 1)
= |Inhylly - 11"
Note that

gu(t) = 2 c J...J (u,)...e, (u) -
N 1<H .0 1 N 1. [O.I]Mei 177 %q

f(ul.t)...f(um.t)dul...dum

i....
..imSN 1 m
=3 c ¢, (t)...e; (t)
...imSN i1"'im i1 im
P; Py
=3 <y i (cpq (t)) ...(opq (t))
1311.....1m$N 1" "m 1 r

= N(¢)(t). where ¢ = (wl.....wn) e Hy.

and also that, for any given ¢ = (wl.....wN) € HN' if we put f(u.t)
N

i=1
From the above we immediately obtain the following

AN VT ORUANAR ARSI W IS N NN ~
BN XA XA X X) ; ' ) U " ®, o,
WO PR O A LRI C Dk ..l.o FaP I YT 'ﬂ" o \ \ s o\.

v =3 e (u)p,(t). then feL?[0,11 8 H . [|I£][] = |loll, and Af = Ty(e).

W M T T 0 R a o a ™ "0 "W nda® a™a” " et
'.-‘.r" S, .,’5*\... LAPAS LN 7. -.‘J‘. (8 -\J\'_;}_t‘_\ e
WO YR AL

=3 & 4 (Iéeil(u)f(u.t)du)...(féeim(u)f(u.t)du)

Lemma 4 (1) For any g = Af ¢ G with f e L2[O.1] ® Hl and for any 6 > O, there is

A SR

YA i

e NN e
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an element gy of the form gy=Ty(¥) with ey, | el IH < |11£1]] such that e,
||S‘SN||C < & for all sufficiently large N. Ny

(11) Ty(K)) € G_ for all r0, N21.

Proof of Theorem 1 (i) Let g e G, §,56'>0 be given, and assume that g is of the -

- e S
-
ey S

‘.

form g=Af, feL2[0.1]0H1. Choose N large enough that llg-gNllc < 6/4 with
gy=Ty(#). veHy (Lemma 4 (1)). and My > @86)2™ (111£1112 + 6°) (cf. Lemma 1). <
Then, by Lemmas 1, 2 and 3(1).

P(|Ix/a-gll, < 8) 2 P(||Ty(B)/a-Ty(e) |l < 674)

%

-

]

- P(IIX—XNIIC > ab/4) DY

gt

- P(| [X-Ty(B) || > ab/4) X

2, .. ‘

2 exp [-(a2™/2)(| 10|15 + 673)] i

- C + exp{-My(a5/4)*™ o

X)

- C . exp[_c..a2/(m-2)] \é

for all sufficiently large a. Noting that ||¢||H < 111£11]. we thus obtain -

2 ,

Pl I%/a - gl < 8) 2 exl-@2™2)([1£]112 + 26'/3)] . i

for all sufficiently large a, and the assertion follows from the definition of %

%t

D(g). -

%

’

bt

Proof of Theorem 1 (i) Given 6,6', r>0, choose N large enough that :,
&

,>(3/8)/"(r?-5') (cf. Lewma 1). Then. by Lemmas 1, 2, 3(ii) and 4(ii).
P(d(Va, G_) > 8) < P(d(V/a, Ty(K) > 5)
< P(A(Ty(B)/a, Ty(K ) > 8/3)
+ p(llx-xNHC > ab/3) + P(llxN-TN(B)IIC > ab/3) .
¢ exp [-(a*™/2)(r? - 5'/2)]

A
ol

+C - exp[—"n(a6/3)2/m] + C . exp[—C' .a2/(m—2)]

< exp [-(a™/2)(r%-5")]
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for all sufficiently large a. This completes the proof of Theorem 1.

3. Proof of Theorem 2
It follows from Lenmas 1 and 2 that

: P IX-Ty(B) || > 2) ¢ exp[-Mz>™

]

for all sufficiently large z and N, where M is any given positive constant.
Note also that both processes X(+) and TN(B)(°) are self-similar with parameter

w2, i.e., X(c*) and cm/2X(°). and also TN(B)(C°) and cm/

N(B)(°). have the
same finite dimensional distributions for any ¢>0. Using these facts and the

first Borel-Cantelli lemma, we get by the standard argument

Lemma 5 For any € > O, with probability 1

lim sup ||ZN - TN(B)(nt)/(2n logzn)mlzllc { €
n—xo

for sufficiently large N.

Note that
m/2
TN(B)(nt)/(2n logzn) = TN(Bn)(t).
where Bn(t) = B(nt)/(2n log2n)1/2. Thus, by Strassen’s law of the iterated

logarithm for B and the continuous mapping theorem., we have

Lemma 6 For any N > 1, with probability 1 the random sequence (TN(BN). n23} in
C1 is relatively compact and the set of its limit points is TN(K1)=(TN(w):

¢6K1)-

Theorem 2 follows from Lemmas 4, 5 and 6.
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